Virtual Group Knowledge and Group Belief in Topological Evidence Models

Djanira Gomes

Based on joint work with

Alexandru Baltag & Malvin Gattinger

- Topological knowledge
- 2 The problem
- Formal definitions
- 4 Axiomatizations
- Conclusions

- Topological knowledge
- 2 The problem
- Formal definitions
- 4 Axiomatizations
- Conclusions

A topological account of knowledge

Why use topological semantics for epistemic logic?

• Richer, evidence-based notions of knowledge and belief.

We represent **evidence** topologically:

Hard evidence	Partition cells	
Soft evidence	Open sets	
Justifications	Dense open sets	

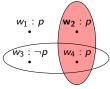
Justifications are consistent with all other evidence.

On topological evidence models (topo-e-models),

- belief amounts to having a supporting justification,
- knowledge is interpreted as correctly justified belief,
- and knowledge is fallible!

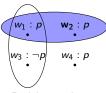
Charles' trial

Did Charles kill Daisy?



Alice's evidence

Spoiler: yes! (w_2)



Bob's evidence

- Intent to kill: $I := \{w_2, w_4\}$
- Caught in the act: $C = \{w_1, w_2\}$
- Guilty: $\llbracket p \rrbracket = I \cup C$
- **Not** guilty: $X \setminus [p]$
- Jury foreperson Alice's evidence: **/**, ¬**C**
- Detective Bob's evidence: C, ¬I

- Topological knowledge
- 2 The problem
- Formal definitions
- 4 Axiomatizations
- Conclusions

The goal

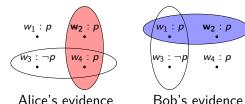
Would Alice and Bob as a group agree that Charles is guilty?

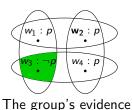
The goal: interpreting (distributed) knowledge of a group on multi-agent topo-e-models.

The approach: pooling together individual evidence.

The problem: a group may know (believe) less than (any of) its members!

Group knowledge: the "problem" of non-Monotonicity

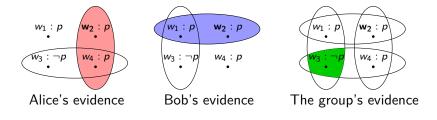




• Intent to kill: $I := \{w_2, w_4\}$

- Caught in the act: $C = \{w_1, w_2\}$
- Guilty: $\llbracket p \rrbracket = I \cup C$
- Not guilty: $X \setminus [p]$
- Jury foreperson Alice's evidence: *I*, ¬*C*
- Detective Bob's evidence: C, ¬I

Group knowledge: the "problem" of non-Monotonicity



We have $w_2 \in K_a(P) \cap K_b(P)$, but $w_2 \not\in B_{\{a,b\}}(P)$.

Charles is now considered not guilty... due to reasonable doubt!

Virtual group knowledge and virtual group belief

This is a **feature**, not a **bug**!

Fallible knowledge must violate Group Monotonicity.

- Dynamics of belief must be non-monotonic;
- Realistic group knowledge should be "realizable";
- Our group knowledge is **not** traditional distributed knowledge!

Virtual group knowledge and virtual group belief describe epistemic potential of the group.

• Virtual group knowledge pre-encodes individual knowledge after sharing.

- Topological knowledge
- 2 The problem
- Formal definitions
- 4 Axiomatizations
- Conclusions

The multi-agent model

Definition 1 (Multi-Agent Topo-E-Model)

A multi-agent topo-e-model for a group A of agents is a tuple

$$(X, \Pi_{\pmb{i}}, \pmb{\tau_{\pmb{i}}}, \llbracket \cdot \rrbracket)_{\pmb{i} \in A}$$

such that

- ① X is the state space
- **2** For each agent $i \in A$:
 - $\Pi_i \subseteq \mathcal{P}(X)$ is a partition of X (Hard evidence)
 - $\tau_i \subseteq \mathcal{P}(X)$ is a **topology** on X (Soft evidence)
 - $\Pi_i \subseteq \tau_i$ (Hard evidence is evidence)
- $[\![\cdot]\!]: X \to \mathcal{P}(\mathsf{Prop}) \ is \ a \ valuation.$

Notions of (individual) knowledge and belief

Semantic operators:

Infallible knowledge	$[\forall]_i(P) := \{x \in X \mid \Pi_i(x) \subseteq P\}$
Factive evidence	$\Box_i(P) := \{ x \in X \mid \exists U \in \tau_i : x \in U \subseteq P \}$ $= Int_i(P)$
Justified belief	$B_i(P) := \{x \in X \mid \Pi_i(x) \subseteq Cl_i(Int_i(P))\}$
Fallible knowledge	$K_i(P) := \{x \in X \mid \exists U \in \tau_i : x \in U \subseteq P\}$
	and $\Pi_i(x) \subseteq Cl_i(U)$ }
$=$ $Int_{ au_i^{dense}}(P)$	

Useful equations:

- $B_i(P) = [\forall]_i \diamondsuit_i \Box_i(P)$
- $K_i(P) = \Box_i(P) \cap B_i(P)$

Definition 2 (Join Partition and Join Topology)

Given agents I with individual partitions $(\Pi_i)_{i \in I}$ and topologies $(\tau_i)_{i \in I}$, the **join partition** for the group I is

$$\Pi_I := \bigvee_{i \in I} \Pi_i = \{ \Pi_I(x) \mid x \in X \} \quad \text{where} \quad \Pi_I(x) := \bigcap_{i \in I} \Pi_i(x)$$

and the join topology is the topology

$$\tau_{I} = \bigvee_{i \in I} \tau_{i}$$
 generated by the union $\bigcup_{i \in I} \tau_{i}$.

Group knowledge is interior in the dense open join topology.

Evidence-sharing dynamics

share_I: the (semi-public) action of **Sharing** (all evidence) within group $I \subseteq A$.

$$\mathfrak{M} = (X, \Pi_i, \tau_i, \llbracket \cdot \rrbracket) \mapsto \mathfrak{M}(\mathsf{share}_I) := (X, \Pi(\mathsf{share}_I), \tau(\mathsf{share}_I), \llbracket \cdot \rrbracket)$$
 where $\tau_i(\mathsf{share}_I) = \tau_I, \qquad \Pi_i(\mathsf{share}_I) = \Pi_I \qquad (\mathsf{for "insiders"} \ i \in I),$

 $\tau_i(\mathsf{share}_I) = \tau_i \qquad \Pi_i(\mathsf{share}_I), = \Pi_i \qquad \text{(for "outsiders" } i \notin I),$

Virtual group knowledge pre-encodes individual knowledge after sharing:

Proposition 1

For every proposition $P \subseteq X$:

$$[\forall]_{i}^{\mathfrak{M}(\mathsf{share}_{I})}(P) = [\forall]_{I}^{\mathfrak{M}}(P), \quad \Box_{i}^{\mathfrak{M}(\mathsf{share}_{I})}(P) = \Box_{I}^{\mathfrak{M}}(P),$$

$$B_{i}^{\mathfrak{M}(\mathsf{share}_{I})}(P) = B_{I}^{\mathfrak{M}}(P), \quad K_{i}^{\mathfrak{M}(\mathsf{share}_{I})}(P) = K_{I}^{\mathfrak{M}}(P).$$

- 1 Topological knowledge
- 2 The problem
- Formal definitions
- 4 Axiomatizations
- Conclusions

Our static languages

The language $\mathcal{L}_{\square[\forall]_I}$ of **group evidence** is defined recursively as

$$\varphi ::= p \mid \neg \varphi \mid \varphi \wedge \varphi \mid \Box_{I} \varphi \mid [\forall]_{I} \varphi$$

and the language $\mathcal{L}_{\textit{KB}_l}$ of **group knowledge and belief** is defined recursively as

$$\varphi ::= p \mid \neg \varphi \mid \varphi \wedge \varphi \mid B_{I}\varphi \mid K_{I}\varphi$$

where $p \in Prop$ and I is any group.

Fragments $\mathcal{L}_{\square[V]_{i,A}}$ and $\mathcal{L}_{KB_{i,A}}$ restrict the resp. modalities to individuals and the full group A.

The logic of group evidence

Theorem 1

The proof system $\square[\forall]_{\mathbf{i}}$ is sound and complete for $\mathcal{L}_{\square[\forall]_{\mathbf{i}}}$, and the logic $\mathcal{L}_{\square[\forall]_{\mathbf{i}}}$ is decidable. These properties are inherited by the proof system $\square[\forall]_{\mathbf{i},\mathbf{A}}$ and the logic $\mathcal{L}_{\square[\forall]_{\mathbf{i},\mathbf{A}}}$.

(S4 _□)	S4 axioms and rules for \square_I		
$(S5_{[orall]})$	S5 axioms and rules for $[\forall]_I$		
Monotonicity	\Box J $arphi ightarrow \Box$ J $arphi$,	$[\forall]_{J}\varphi \to [\forall]_{I}\varphi$	(for $J \subseteq I$)
Inclusion	$[\forall]_{I}\varphi \to \Box_{I}\varphi$		

The logic of group knowledge and group belief (1/2)

Theorem 2

The proof system $KB_{i,A}$ is sound and complete for $\mathcal{L}_{KB_{i,A}}$. Moreover, this logic is decidable.

Axioms & rules of normal modal logic for K & B

Stalnaker's Epistemic-Doxastic Axioms:

Truthfulness of knowledge (T)	$\mathbf{K}_{\alpha}\varphi \rightarrow \varphi$
Pos. Intro. of knowledge (KK)	$K_lphaarphi o K_lpha$

Consistency of Beliefs (CB)

Strong Pos. Intro. of beliefs (SPI)

Strong Neg. Intro. of beliefs (SNI) $\neg B_{\alpha} \varphi \rightarrow K_{\alpha} \neg B_{\alpha} \varphi$

Knowledge implies Belief (KB)

Full Belief (FB)

$$\mathbf{K}_{\alpha}\varphi \rightarrow \mathbf{K}_{\alpha}\mathbf{K}_{\alpha}\varphi$$

$$\mathbf{R} : \mathcal{O} \to \neg \mathbf{R} = \mathcal{O}$$

$$\mathbf{B}_{\alpha}\varphi \to \neg \mathbf{B}_{\alpha} \neg \varphi$$

$$\mathbf{B}_{\alpha}\varphi \to \mathbf{K}_{\alpha}\mathbf{B}_{\alpha}\varphi$$

$$\neg \mathbf{B}_{\alpha} \varphi \to \mathbf{K}_{\alpha} \neg \mathbf{B}_{\alpha} \varphi$$

$$\mathbf{K}_{\alpha}\varphi \rightarrow \mathbf{B}_{\alpha}\varphi$$

$$\mathbf{B}_{\alpha}\varphi \rightarrow \mathbf{B}_{\alpha}\mathbf{K}_{\alpha}\varphi$$

where $\alpha \in A \cup \{A\}$.

The logic of group knowledge and group belief (2/2)

In addition to the above axioms, we also need the following:

Super-Introspection (SI)	$B_{i}arphi o K_{A}B_{i}arphi$
Weak Monotonicity (WM)	$\left(K_{i}\varphi\wedgeB_{A}\varphi\right)\toK_{A}\varphi$
Consistency of group Belief with	$(igwedge_{\mathbf{i}\in\mathbf{A}}K_{\mathbf{i}}arphi_{\mathbf{i}}) ightarrow\langleB_{\mathbf{A}} angle(igwedge_{\mathbf{i}\in\mathbf{A}}arphi_{\mathbf{i}})$
Distributed knowledge (CRD)	

for any A-indexed set of formulas $\{\varphi_i \mid i \in A\}$.

Group Knowledge Axioms:

Our dynamic languages

The **dynamic language** $\mathcal{L}_{\square[\forall],[\mathsf{share}_i]}$ is defined recursively as

$$\varphi ::= p \mid \neg \varphi \mid \varphi \wedge \varphi \mid \Box_{I} \varphi \mid [\forall]_{I} \varphi \mid [\mathsf{share}_{I}] \varphi$$

(where $p \in Prop \text{ and } I \subseteq A \text{ is any group}$);

 $\mathcal{L}_{\mathit{KB}_{i,A}[\mathsf{share}_A]}$ is given by

$$\varphi ::= p \mid \neg \varphi \mid \varphi \wedge \varphi \mid B_i \varphi \mid B_A \varphi \mid K_i \varphi \mid K_A \varphi \mid [\mathsf{share}_A] \varphi$$

(where $p \in Prop$, and $i \in A$ is any agent).

We interpret the **share modality** as follows:

$$\llbracket [\mathsf{share}_I] \varphi \rrbracket^{\mathfrak{M}} = \llbracket \varphi \rrbracket^{\mathfrak{M}(\mathsf{share}_I)}.$$

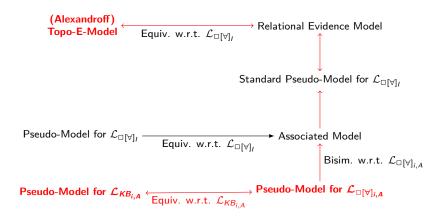
The dynamic logics of evidence sharing

Theorem 3

The proof systems $\square[\forall]_{I}[\mathsf{share}_{I}]$ and $\mathsf{KB}_{i,A}[\mathsf{share}_{A}]$ are sound and complete for $\mathcal{L}_{\square[\forall]_{I}[\mathsf{share}_{I}]}$ and respectively $\mathcal{L}_{\mathsf{KB}_{i,A}[\mathsf{share}_{A}]}$. Moreover, these logics are provably co-expressive with their static bases $\mathcal{L}_{\square[\forall]_{I}}$ and respectively $\mathcal{L}_{\mathsf{KB}_{i,A}}$, and thus decidable.

(□[∀],)	Axioms and rules of $\Box [\forall]_I$	
([share _/])	Axioms and rules of normal modal logic for [share]	
	Reduction Axioms for [share _I]:	
(Atomic Reduction)	$[share_l]\mathbf{p}\leftrightarrow\mathbf{p}$	(for atomic propositions p)
(Negation Reduction)	$[share_{I}] egarphi\leftrightarrow eg[share_{I}]arphi$	
(□-Reduction)	$[share_{I}]\Box_{J}arphi \leftrightarrow \Box_{J/\!+I}[share_{I}]arphi$	
$(\forall \text{-Reduction})$	$[\operatorname{share}_{\mathbf{I}}][\forall]_{\mathbf{J}}\varphi\leftrightarrow [\forall]_{\mathbf{J}/+\mathbf{I}}[\operatorname{share}_{\mathbf{I}}]\varphi$	where:
		$J/+I:=J\cup I$ when $I\cap J\neq\emptyset$,
		$J/+I:=J$ when $I\cap J=\emptyset$.

Completeness: correspondences



- 1 Topological knowledge
- 2 The problem
- Formal definitions
- 4 Axiomatizations
- Conclusions

Conclusions and future work

Main contributions

- 1 Logic KBi,A
 - Non-monotonic, evidence-based notions of (virtual) group knowledge and group belief
 - Sound, complete, and decidable
 - Better suited to epistemic dynamics induced by evidence-sharing than traditional distributed knowledge
 - Small step towards applying topological semantics to realistic, practical settings: distributed computing, epistemology of social networks
- ② Auxiliary tool: logic □[∀],
 - Sound, complete, and decidable

Conclusions and future work

Future work

- Axiomatizing KB_I: language of group knowledge and belief for arbitrary subgroups I
 - Language is decidable
 - Not clear how to generalize completeness proof from $KB_{i,A}$
- ② Optimizing our **model checker** for $\mathcal{L}_{\square[\forall]}$
 - Haskell-based symbolic model checker for spatial logics
 - Can be used for plausibility models
 - Efficiency of implementation can be improved

References

- [Bal+13] Alexandru Baltag, Nick Bezhanishvili, Aybüke Özgün, and Sonja Smets. "The Topology of Belief, Belief Revision and Defeasible Knowledge". In: Lecture notes in computer science. Springer, 2013, pages 27–40. https://doi.org/10.1007/978-3-642-40948-6_3.
- [BBF22] Alexandru Baltag, Nick Bezhanishvili, and Saúl Fernández González. "Topological Evidence Logics: Multi-agent Setting". In: Language, Logic, and Computation. Edited by Aybüke Özgün and Yulia Zinova. 2022, pages 237–257. https://doi.org/10.1007/978-3-030-98479-3_12.
- [BS20] Alexandru Baltag and Sonja Smets. "Learning What Others Know. EPiC Series in Computing". In: LPAR23 proceedings of the International Conference on Logic for Programming AI and Reasoning. Edited by L. Kovacs and Albert E. Volume 73. 2020, pages 90–110. https://doi.org/10.48550/arXiv.2109.07255.
- [Gom25] Djanira dos Santos Gomes. "Virtual Group Knowledge on Topological Evidence Models". Master's thesis. University of Amsterdam, 2025. https://eprints.illc.uva.nl/id/eprint/2356/.
- [Ram15] Aldo Iván Ramírez Abarca. "Topological Models for Group Knowledge and Belief". Master's thesis. University of Amsterdam, 2015. https://eprints.illc.uva.nl/id/eprint/2250/.

- 6 Extra: Group Monotonicity; the open problem
- Extra: symbolic model checking

Saving Group Monotonicity?

Two previous attempts: enforcing Group Monotonicity.

Two-agent solutions: save $K_i \rightarrow K_A$ by...

- 1 ...restricting individual knowledge (Ramírez, 2015)
 - i.e. individual knowledge depends on the evidence of other agents,
- 2 ...or expanding group knowledge (Fernández, 2018)
 - by only pooling together (a.k.a. cherry picking) evidence that constitutes knowledge.

But: resulting notions of (group) knowledge have undesirable properties.

- Ramírez' individual knowledge depends on what other agents know
- 2 Ramírez' solution does not generalise single-agent case
- 3 Fernández' group knowledge is unattainable in practice

Open problem: completeness of KB_I

Expectation: we can use the approach from the proof for $KB_{i,A}$.

- Extend the proof to all subgroups
- Main correspondence:
 - **1** Pseudo-models for $\mathcal{L}_{\square[\forall]_I}$ as pseudo-models for \mathcal{L}_{KB_I}
 - Recovering knowledge and belief relations from evidence is easy: only one option
 - 2 Pseudo-models for \mathcal{L}_{KB_l} as pseudo-models for $\mathcal{L}_{\square[\forall]_l}$
 - Recovering evidence relations from knowledge and belief is not easy: not uniquely determined

② Pseudo-models for \mathcal{L}_{KB_l} as pseudo-models for $\mathcal{L}_{\square[\forall]_l}$

is a challenge! In particular:

- Pseudo-models for L_{□[∀],} (evidence): belief can be expressed in terms of maximal states w.r.t. evidence
- Pseudo-models for \mathcal{L}_{KB_l} (knowledge): similar: belief can be expressed in terms of maximal states w.r.t. knowledge
- To show: maximal states in terms of soft evidence agree with maximal states in terms of knowledge

Hypothesis: to prove this, we need different definitions for the recovered evidence relations in the case of \mathcal{L}_{KB_I} .

- 6 Extra: Group Monotonicity; the open problem
- Extra: symbolic model checking

Model checking

Symbolic model checking is efficient model checking.

- Compact representation of model
- Efficient representation of formula

Model checking φ on (\mathcal{F}, s) :

- **1** Construct **Binary Decision Diagram** (BDD) of $\|\varphi\|_{\mathcal{F}}$;
- 2 Check whether BDD of φ accepts valuation of s.

Symbolic topo-structures

We model-check on structures equivalent to topo-e-models.

Definition 4 (Symbolic Topo-Structure)

A symbolic topo-structure is a tuple $\mathcal{F} = (\mathsf{Prop}, \theta, E, O)$ s.t.

- Prop is the *vocabulary* (finite)
- \mathbf{Q} θ is the *state law* (boolean formula)
- **3** A state is a set $s \subseteq \text{Prop satisfying } \theta$
- $\bullet E = (E_i)_{i \in A} \text{ is the } evidence$
- **5** $O = (O_i)_{i \in A}$ are the observables
- **1** Each O_i decides a partition over the states of \mathcal{F} .

Soft and hard evidence are represented by propositional variables!

Symbolic semantics

We focus on the semantics of **soft** and **hard** evidence:

Definition 3 (Symbolic Semantics of $\mathcal{L}_{\square[\forall]_j}$)

Given a nonempty subgroup $I \subseteq A$, we define

$$(\mathcal{F}, s) \vDash \Box_{I} \varphi$$
 iff for all states t of \mathcal{F} ,

$$if \ s \cap O_{I} = t \cap O_{I} \ and \ s \cap E_{I} \subseteq t \cap E_{I},$$

$$then \ (\mathcal{F}, t) \vDash \varphi$$

$$(\mathcal{F},s) \vDash [\forall]_I \varphi$$
 iff for all states t of \mathcal{F} ,
$$\mathit{if} \ s \cap O_I = t \cap O_I,$$

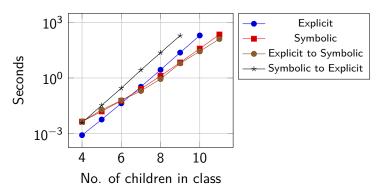
$$\mathit{then} \ (\mathcal{F},t) \vDash \varphi.$$

Obtain **boolean translation** $\|\varphi\|_{\mathcal{F}}$ of $\varphi \in \mathcal{L}_{\square [\forall]_{\iota}}$ such that

$$(\mathcal{F}, s) \vDash \varphi \text{ iff } s \vDash \|\varphi\|_{\mathcal{F}}.$$

Benchmarking

On a scalable model, we checked a formula closely related to (BDK) Consistency of Group Belief with Distributed Knowledge.



The boolean translation of a formula $[\forall]_{I}\varphi$ is

$$\|[\forall]_I \varphi\|_{\mathcal{F}} := \forall (V \setminus O_I)(\theta \to \|\varphi\|_{\mathcal{F}}).$$

It is implemented in Haskell as

```
1 bddOf stm (Forall ags f) = forallSet otherps $ imp (theta stm) (bddOf stm f)
where
cotherps = map fromEnum $ vocab stm \\ evOrObsOfGroup ags (obs stm)
```

The boolean translation of a formula $\Box_I \varphi$ is

$$\|\Box_I \varphi\|_{\mathcal{F}} := \forall E_I' \left(\bigwedge_{e_i \in E_I} (e_i' \leftrightarrow e_i) \rightarrow \forall (\mathsf{Prop} \setminus O_I) \left(\bigwedge_{e_i \in E_I} (e_i' \rightarrow e_i) \land \theta \rightarrow \|\varphi\|_{\mathcal{F}} \right) \right).$$

It is implemented in Haskell as