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A topological account of knowledge

Why use topological semantics for epistemic logic?
Richer, evidence-based notions of knowledge and belief.

We represent evidence topologically:
Hard evidence Partition cells
Soft evidence Open sets
Justifications Dense open sets

Justifications are consistent with all other evidence.
On topological evidence models (topo-e-models),

belief amounts to having a supporting justification,
knowledge is interpreted as correctly justified belief,
and knowledge is fallible!
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Charles’ trial

Did Charles kill Daisy? Spoiler: yes! (w2)

Alice’s evidence

w3 : ¬p w4 : p

w2 : pw1 : p

Bob’s evidence

w3 : ¬p w4 : p

w2 : pw1 : p

Intent to kill: I := {w2,w4}
Caught in the act: C = {w1,w2}
Guilty: JpK = I ∪ C
Not guilty: X \ JpK
Jury foreperson Alice’s evidence: I,¬C
Detective Bob’s evidence: C,¬I
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The goal

Would Alice and Bob as a group agree that Charles is guilty?

The goal: interpreting (distributed) knowledge of a group on
multi-agent topo-e-models.

The approach: pooling together individual evidence.

The problem: a group may know (believe) less than (any of) its
members!
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Group knowledge: the “problem” of non-Monotonicity

Alice’s evidence

w3 : ¬p w4 : p

w2 : pw1 : p

Bob’s evidence

w3 : ¬p w4 : p

w2 : pw1 : p

The group’s evidence

w3 : ¬p w4 : p

w2 : pw1 : p

Intent to kill: I := {w2,w4}
Caught in the act: C = {w1,w2}
Guilty: JpK = I ∪ C
Not guilty: X \ JpK
Jury foreperson Alice’s evidence: I,¬C
Detective Bob’s evidence: C,¬I
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Group knowledge: the “problem” of non-Monotonicity

Alice’s evidence

w3 : ¬p w4 : p

w2 : pw1 : p

Bob’s evidence

w3 : ¬p w4 : p

w2 : pw1 : p

The group’s evidence

w3 : ¬p w4 : p

w2 : pw1 : p

We have w2 ∈ Ka(P)∩ Kb(P), but w2 ̸∈ B{a,b}(P).

Charles is now considered not guilty... due to reasonable doubt!
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Virtual group knowledge and virtual group belief

This is a feature, not a bug!

Fallible knowledge must violate Group Monotonicity.
Dynamics of belief must be non-monotonic;
Realistic group knowledge should be “realizable”;
Our group knowledge is not traditional distributed knowledge!

Virtual group knowledge and virtual group belief describe
epistemic potential of the group.

Virtual group knowledge pre-encodes individual knowledge
after sharing.
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The multi-agent model

Definition 1 (Multi-Agent Topo-E-Model)
A multi-agent topo-e-model for a group A of agents is a tuple

(X,Πi, τi, J·K)i∈A

such that
1 X is the state space
2 For each agent i ∈ A:

Πi ⊆ P(X) is a partition of X (Hard evidence)
τi ⊆ P(X) is a topology on X (Soft evidence)
Πi ⊆ τi (Hard evidence is evidence)

3 J·K : X → P(Prop) is a valuation.
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Notions of (individual) knowledge and belief

Semantic operators:

Infallible
knowledge

[∀]i(P) := {x ∈ X | Πi(x) ⊆ P}

Factive evidence 2i(P) := {x ∈ X | ∃U ∈ τi : x ∈ U ⊆ P}
= Inti(P)

Justified belief Bi(P) := {x ∈ X | Πi(x) ⊆ Cli(Inti(P))}
Fallible
knowledge

Ki(P) := {x ∈ X | ∃U ∈ τi : x ∈ U ⊆ P

and Πi(x) ⊆ Cli(U)}
= Intτ dense

i
(P)

Useful equations:
Bi(P) = [∀]i3i2i(P)
Ki(P) = 2i(P) ∩ Bi(P)
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Pooling evidence

Definition 2 (Join Partition and Join Topology)
Given agents I with individual partitions (Πi)i∈I and topologies
(τi)i∈I, the join partition for the group I is

ΠI :=
∨
i∈I

Πi = {ΠI(x) | x ∈ X} where ΠI(x) :=
∩
i∈I

Πi(x)

and the join topology is the topology

τI =
∨
i∈I

τi generated by the union
∪
i∈I

τi.

Group knowledge is interior in the dense open join topology.
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Evidence-sharing dynamics

shareI: the (semi-public) action of Sharing (all evidence) within
group I ⊆ A.

M = (X,Πi, τi, J·K) 7→ M(shareI) := (X,Π(shareI), τ (shareI), J·K)
where
τi(shareI) = τI, Πi(shareI) = ΠI (for “insiders” i ∈ I),
τj(shareI) = τj Πj(shareI), = Πj (for “outsiders” j 6∈ I),

Virtual group knowledge pre-encodes individual knowledge
after sharing:

Proposition 1
For every proposition P ⊆ X:

[∀]M(shareI)
i (P) = [∀]MI (P), 2

M(shareI)
i (P) = 2M

I (P),
BM(shareI)

i (P) = BM
I (P), KM(shareI)

i (P) = KM
I (P).
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Our static languages

The language L2[∀]I of group evidence is defined recursively as

φ ::= p | ¬φ | φ ∧ φ | 2Iφ | [∀]Iφ

and the language LKBI of group knowledge and belief is defined
recursively as

φ ::= p | ¬φ | φ ∧ φ | BIφ | KIφ

where p ∈ Prop and I is any group.

Fragments L2[∀]i,A and LKBi,A restrict the resp. modalities to
individuals and the full group A.
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The logic of group evidence

Theorem 1

The proof system 2[∀]I is sound and complete for L2[∀]I, and
the logic L2[∀]I is decidable. These properties are inherited by
the proof system 2[∀]i,A and the logic L2[∀]i,A.

(S42) S4 axioms and rules for 2I
(S5[∀]) S5 axioms and rules for [∀]I
Monotonicity 2Jφ → 2Iφ, [∀]Jφ → [∀]Iφ (for J ⊆ I)
Inclusion [∀]Iφ → 2Iφ
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The logic of group knowledge and group belief (1/2)

Theorem 2

The proof system KBi,A is sound and complete for LKBi,A.
Moreover, this logic is decidable.

Axioms & rules of normal modal logic for K & B

Stalnaker’s Epistemic-Doxastic Axioms:
Truthfulness of knowledge (T) Kαφ → φ

Pos. Intro. of knowledge (KK) Kαφ → KαKαφ

Consistency of Beliefs (CB) Bαφ → ¬Bα¬φ
Strong Pos. Intro. of beliefs (SPI) Bαφ → KαBαφ

Strong Neg. Intro. of beliefs (SNI) ¬Bαφ → Kα¬Bαφ

Knowledge implies Belief (KB) Kαφ → Bαφ

Full Belief (FB) Bαφ → BαKαφ

where α ∈ A ∪ {A}.
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The logic of group knowledge and group belief (2/2)

In addition to the above axioms, we also need the following:

Group Knowledge Axioms:
Super-Introspection (SI) Biφ → KABiφ

Weak Monotonicity (WM) (Kiφ ∧ BAφ) → KAφ

Consistency of group Belief with (
∧

i∈A Kiφi) → 〈BA〉(
∧

i∈A φi)

Distributed knowledge (CBD)
for any A-indexed set of formulas {φi | i ∈ A}.
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Our dynamic languages

The dynamic language L2[∀]I[shareI] is defined recursively as

φ ::= p | ¬φ | φ ∧ φ | 2Iφ | [∀]Iφ | [shareI]φ

(where p ∈ Prop and I ⊆ A is any group);

LKBi,A[shareA] is given by

φ ::= p | ¬φ | φ ∧ φ | Biφ | BAφ | Kiφ | KAφ | [shareA]φ

(where p ∈ Prop, and i ∈ A is any agent).

We interpret the share modality as follows:

J[shareI]φKM = JφKM(shareI).
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The dynamic logics of evidence sharing

Theorem 3

The proof systems 2[∀]I[shareI] and KBi,A[shareA] are sound
and complete for L2[∀]I[shareI] and respectively LKBi,A[shareA].
Moreover, these logics are provably co-expressive with their
static bases L2[∀]I and respectively LKBi,A, and thus decidable.

(2[∀]I) Axioms and rules of 2[∀]I

([shareI]) Axioms and rules of normal modal logic for [shareI]

Reduction Axioms for [shareI]:
(Atomic Reduction) [shareI]p ↔ p (for atomic propositions p)
(Negation Reduction) [shareI]¬φ ↔ ¬[shareI]φ

(2-Reduction) [shareI]2Jφ ↔ 2J/+I[shareI]φ

(∀-Reduction) [shareI][∀]Jφ ↔ [∀]J/+I[shareI]φ where:
J/+ I := J ∪ I when I ∩ J ̸= ∅,
J/+ I := J when I ∩ J = ∅.
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Completeness: correspondences

(Alexandroff)
Topo-E-Model Relational Evidence Model

Standard Pseudo-Model for L2[∀]I

Associated ModelPseudo-Model for L2[∀]I

Pseudo-Model for L2[∀]i,APseudo-Model for LKBi,A

Equiv. w.r.t. L2[∀]I

Equiv. w.r.t. L2[∀]I
Bisim. w.r.t. L2[∀]i,A

Equiv. w.r.t. LKBi,A
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Conclusions and future work

Main contributions
1 Logic KBi,A

Non-monotonic, evidence-based notions of (virtual) group
knowledge and group belief
Sound, complete, and decidable
Better suited to epistemic dynamics induced by
evidence-sharing than traditional distributed knowledge
Small step towards applying topological semantics to realistic,
practical settings: distributed computing, epistemology of
social networks

2 Auxiliary tool: logic 2[∀]I
Sound, complete, and decidable
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Conclusions and future work

Future work
1 Axiomatizing KBI: language of group knowledge and belief

for arbitrary subgroups I
Language is decidable
Not clear how to generalize completeness proof from KBi,A

2 Optimizing our model checker for L2[∀]I
Haskell-based symbolic model checker for spatial logics
Can be used for plausibility models
Efficiency of implementation can be improved

26 / 26



References

[Bal+13] Alexandru Baltag, Nick Bezhanishvili, Aybüke Özgün, and Sonja Smets.
“The Topology of Belief, Belief Revision and Defeasible Knowledge”. In:
Lecture notes in computer science. Springer, 2013, pages 27–40.
https://doi.org/10.1007/978-3-642-40948-6_3.

[BBF22] Alexandru Baltag, Nick Bezhanishvili, and Saúl Fernández González.
“Topological Evidence Logics: Multi-agent Setting”. In: Language, Logic,
and Computation. Edited by Aybüke Özgün and Yulia Zinova. 2022,
pages 237–257. https://doi.org/10.1007/978-3-030-98479-3_12.

[BS20] Alexandru Baltag and Sonja Smets. “Learning What Others Know. EPiC
Series in Computing”. In: LPAR23 proceedings of the International
Conference on Logic for Programming AI and Reasoning. Edited by
L. Kovacs and Albert E. Volume 73. 2020, pages 90–110.
https://doi.org/10.48550/arXiv.2109.07255.

[Gom25] Djanira dos Santos Gomes. “Virtual Group Knowledge on Topological
Evidence Models”. Master’s thesis. University of Amsterdam, 2025.
https://eprints.illc.uva.nl/id/eprint/2356/.

[Ram15] Aldo Iván Ramírez Abarca. “Topological Models for Group Knowledge and
Belief”. Master’s thesis. University of Amsterdam, 2015.
https://eprints.illc.uva.nl/id/eprint/2250/.

1 / 12

https://doi.org/10.1007/978-3-642-40948-6_3
https://doi.org/10.1007/978-3-030-98479-3_12
https://doi.org/10.48550/arXiv.2109.07255
https://eprints.illc.uva.nl/id/eprint/2356/
https://eprints.illc.uva.nl/id/eprint/2250/


6 Extra: Group Monotonicity; the open problem

7 Extra: symbolic model checking

2 / 12



Saving Group Monotonicity?

Two previous attempts: enforcing Group Monotonicity.

Two-agent solutions: save Ki → KA by...
1 ...restricting individual knowledge (Ramírez, 2015)

i.e. individual knowledge depends on the evidence of other
agents,

2 ...or expanding group knowledge (Fernández, 2018)
by only pooling together (a.k.a. cherry picking) evidence that
constitutes knowledge.

But: resulting notions of (group) knowledge have undesirable
properties.

1 Ramírez’ individual knowledge depends on what other agents
know

2 Ramírez’ solution does not generalise single-agent case
3 Fernández’ group knowledge is unattainable in practice
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Open problem: completeness of KBI

Expectation: we can use the approach from the proof for KBi,A.

Extend the proof to all subgroups
Main correspondence:

1 Pseudo-models for L2[∀]I as pseudo-models for LKBI

Recovering knowledge and belief relations from evidence is
easy: only one option

2 Pseudo-models for LKBI as pseudo-models for L2[∀]I
Recovering evidence relations from knowledge and belief is
not easy: not uniquely determined
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Open problem: completeness of KBI, cont.d

2 Pseudo-models for LKBI as pseudo-models for L2[∀]I

is a challenge! In particular:
Pseudo-models for L2[∀]I (evidence):
belief can be expressed in terms of maximal states w.r.t.
evidence
Pseudo-models for LKBI (knowledge):
similar: belief can be expressed in terms of maximal states
w.r.t. knowledge
To show: maximal states in terms of soft evidence agree with
maximal states in terms of knowledge

Hypothesis: to prove this, we need different definitions for the
recovered evidence relations in the case of LKBI .
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Model checking

Symbolic model checking is efficient model checking.
Compact representation of model
Efficient representation of formula

Model checking φ on (F , s):
1 Construct Binary Decision Diagram (BDD) of ‖φ‖F ;
2 Check whether BDD of φ accepts valuation of s.
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Symbolic topo-structures

We model-check on structures equivalent to topo-e-models.

Definition 4 (Symbolic Topo-Structure)

A symbolic topo-structure is a tuple F = (Prop, θ,E,O) s.t.
1 Prop is the vocabulary (finite)
2 θ is the state law (boolean formula)
3 A state is a set s ⊆ Prop satisfying θ

4 E = (Ei)i∈A is the evidence
5 O = (Oi)i∈A are the observables
6 Each Oi decides a partition over the states of F .

Soft and hard evidence are represented by propositional variables!
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Symbolic semantics
We focus on the semantics of soft and hard evidence:

Definition 3 (Symbolic Semantics of L2[∀]I)
Given a nonempty subgroup I ⊆ A, we define

(F , s) ⊨ 2Iφ iff for all states t of F ,

if s ∩ OI = t ∩ OI and s ∩ EI ⊆ t ∩ EI,

then (F , t) ⊨ φ

(F , s) ⊨ [∀]Iφ iff for all states t of F ,

if s ∩ OI = t ∩ OI,

then (F , t) ⊨ φ.

Obtain boolean translation ‖φ‖F of φ ∈ L2[∀]I such that

(F , s) ⊨ φ iff s ⊨ ‖φ‖F .
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Benchmarking

On a scalable model, we checked a formula closely related to
(BDK) Consistency of Group Belief with Distributed Knowledge.

4 6 8 10
10−3

100

103

No. of children in class

Se
co

nd
s

Explicit
Symbolic

Explicit to Symbolic
Symbolic to Explicit
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Implementation: Boolean translation of [∀]Iφ

The boolean translation of a formula [∀]Iφ is

‖[∀]Iφ‖F := ∀(V \ OI)(θ → ‖φ‖F ).

It is implemented in Haskell as
1 bddOf stm (Forall ags f) = forallSet otherps $ imp (theta stm) (bddOf stm f)

where
2 otherps = map fromEnum $ vocab stm \\ evOrObsOfGroup ags (obs stm)
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Implementation: Boolean translation of 2Iφ

The boolean translation of a formula 2Iφ is

∥2Iφ∥F := ∀E′
I

Ñ ∧
ei∈EI

(e′i ↔ ei) → ∀(Prop \ OI)

Ñ ∧
ei∈EI

(e′i → ei) ∧ θ → ∥φ∥F

éé
.

It is implemented in Haskell as
1 bddOf stm (Box ags f) = forallSet evPrime $ imp evAtState evImpliesf
2 where
3 ev = map fromEnum $ evOrObsOfGroup ags (evidence stm)
4 evPrime = map fromEnum $ take (length ev) [freshp (vocab stm) ..]
5 primeMap = Data.IntMap.fromList $ zip ev evPrime
6 evAtState = conSet [equ (var $ primeMap Data.IntMap.! e) (var e) | e <- ev]
7 stateSatEv = conSet [imp (var $ primeMap Data.IntMap.! e) (var e) | e <- ev]
8 otherps = map fromEnum $ vocab stm \\ evOrObsOfGroup ags (obs stm)
9 evImpliesf = forallSet otherps $ imp (con stateSatEv (theta stm)) (bddOf stm

f)
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