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A topological account of knowledge

Why use topological semantics for epistemic logic?

@ Richer, evidence-based notions of knowledge and belief.

We represent evidence topologically:

Hard evidence Partition cells
Soft evidence Open sets
Justifications Dense open sets

Justifications are consistent with all other evidence.

On topological evidence models (topo-e-models),
@ belief amounts to having a supporting justification,
@ knowledge is interpreted as correctly justified belief,

o and knowledge is fallible!
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Charles’ trial

Did Charles kill Daisy? Spoiler: yes! (w»)

" ﬁ

&P

4

Alice's evidence Bob's evidence

Intent to kill: /:= {wy, wy}

Caught in the act: C= {w;y, wy}
Guilty: [p] =1uC

Not guilty: X\ [p]

Jury foreperson Alice's evidence: I, =C

Detective Bob's evidence: C, -/
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© The problem
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The goal

Would Alice and Bob as a group agree that Charles is guilty?

The goal: interpreting (distributed) knowledge of a group on
multi-agent topo-e-models.

The approach: pooling together individual evidence.

The problem: a group may know (believe) less than (any of) its
members!
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Group knowledge: the “problem” of non-Monotonicity

[
e o)
g b

Alice's evidence Bob's evidence The group's evidence

@ Intent to kill: /:= {wy, wa}

Caught in the act: C= {w;, w,}
Guilty: [p] =1uC

Not guilty: X\ [p]

Jury foreperson Alice’s evidence: /,=C

Detective Bob's evidence: C,—l/
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Group knowledge: the “problem” of non-Monotonicity

A
o o R
S5l ST

Alice's evidence Bob's evidence The group's evidence

We have wy € K,(P) N Kp(P), but wy & B{a,b}(P)-

Charles is now considered not guilty... due to reasonable doubt!
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Virtual group knowledge and virtual group belief

This is a feature, not a bug!

Fallible knowledge must violate Group Monotonicity.
@ Dynamics of belief must be non-monotonic;
@ Realistic group knowledge should be “realizable”;

@ Our group knowledge is not traditional distributed knowledge!

Virtual group knowledge and virtual group belief describe
epistemic potential of the group.

@ Virtual group knowledge pre-encodes individual knowledge
after sharing.
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© Formal definitions
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The multi-agent model

Definition 1 (Multi-Agent Topo-E-Model)

A multi-agent topo-e-model for a group A of agents is a tuple

(X7 |_|,', Ti, [[']])ieA

such that

@ X is the state space
@ For each agent i € A:

o N; CP(X) is a partition of X (Hard evidence)
o 7, C P(X) is a topology on X (Soft evidence)
o N;C (Hard evidence is evidence)

© []: X— P(Prop) is a valuation.
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Notions of (individual) knowledge and belief

Semantic operators:

Infallible [V]i(P) :== {xe€ X | Ni(x) C P}
knowledge
Factive evidence O(P) :={xe X|3UeT:xc UC P}

= Int;(P)
Justified belief Bi(P) := {x € X| Ni(x) C Cli(Int(P))}
Fallible Ki(P):={xe X|3Ueri:xe UCP
knowledge

and Mi(x) C Cli(U)}
= Int_’_’_dense(P)

Useful equations:
e Bi(P) = [v];<;04P)
o Ki(P)=0i(P)N Bi(P)
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Pooling evidence

Definition 2 (Join Partition and Join Topology)

Given agents | with individual partitions (M;)ic; and topologies
(1i)ic1, the join partition for the group I is

M=\ Mi={N(x) | xe X} where My(x) := ) Ni(x)
i€l icl

and the join topology is the topology

T = \/7‘,- generated by the union U Tho
icl i€l

Group knowledge is interior in the dense open join topology.
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Evidence-sharing dynamics

share;: the (semi-public) action of Sharing (all evidence) within
group I C A.

M= (X, N, 73, [-]) — M(share) := (X, MN(share,), 7(sharey), [-])

where
Ti(share)) =1, Mi(share;)) =11, (for “insiders” i € ),
Tj(share)) =1; Mj(share)), =T1; (for “outsiders” j & 1),

Virtual group knowledge pre-encodes individual knowledge
after sharing:

Proposition 1

For every proposition P C X:

M7 (P) = MPP), O] (P) =of(P),

1

B‘}m(share,) (P) _ B{[);)I(P)’ K?R(Share/)(P) — [(:Im(P)
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@ Axiomatizations
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Our static languages

The language Em[v], of group evidence is defined recursively as

pu=ploelone| O [V]e

and the language Lkpg, of group knowledge and belief is defined
recursively as

pu=pl-p|loAe| By | Kip
where p € Prop and /is any group.

Fragments ﬁD[V] " and Lkg, a restrict the resp. modalities to
individuals and the full group A.
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The logic of group evidence

The proof system O[V]; is sound and complete for Loy, and
the logic EDMI is decidable. These properties are inherited by
the proof system O[V]; o and the logic Loy, , -

(S40) S4 axioms and rules for O,

(S5v) S5 axioms and rules for [V],

Monotonicity Oy — Oy, [V]l; = [V]e (for JC 1)
Inclusion V], — O
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The logic of group knowledge and group belief (1/2)

The proof system KBja is sound and complete for Lkp, , .
Moreover, this logic is decidable.

Axioms & rules of normal modal logic for K & B

Stalnaker’s Epistemic-Doxastic Axioms:

Truthfulness of knowledge (T) Kap — ¢

Pos. Intro. of knowledge (KK) Kap = KaKap
Consistency of Beliefs (CB) Boy — —Bap
Strong Pos. Intro. of beliefs (SPI) Bap — KaBay
Strong Neg. Intro. of beliefs (SNI) “Bap = Ka—Bay
Knowledge implies Belief (KB) Koy — Bap

Full Belief (FB) Boy — BaKap

where oo € AU {A}.
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The logic of group knowledge and group belief (2/2)

In addition to the above axioms, we also need the following:

Group Knowledge Axioms:

Super-Introspection (SI) Bivx — KaBip
Weak Monotonicity (WM) (Kip A Bap) — Kag
Consistency of group Belief with (Aica Kigi) = (Ba)(Aica #i)

Distributed knowledge (CBD)
for any A-indexed set of formulas {¢; | i € A}.
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Our dynamic languages

The dynamic language Loy [share,) i defined recursively as
pu=p|-pleAe| D[V | [share]p

(where p € Prop and I C A is any group);

['KB,-,A[shareA] is given by
pu=p|l-ploANg|Bip| Bap| Kip | Kap | [sharea]p

(where p € Prop, and i € A is any agent).

We interpret the share modality as follows:

lIshare i)™ = [p]™shere).
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The dynamic logics of evidence sharing

The proof systems O[V],[share)] and KBja[sharea] are sound
and complete for Loy (share) and respectively £KB,-7A[shareA]-
Moreover, these logics are provably co-expressive with their
static bases ﬁD[V], and respectively £KB,.7 A» and thus decidable.

(vl Axioms and rules of O[V],

([share)]) Axioms and rules of normal modal logic for [share]

Reduction Axioms for [share]:

(Atomic Reduction) [share]p <> p (for atomic propositions p)
(Negation Reduction) [share|]—¢ <+ —[share]p

(O-Reduction) [share|]0 ¢ <> Oy .y [sharel]p

(V-Reduction) [sharei][V] ¢ <> [V], 4 [sharel]e where:

J/+1:=JUlwhen INJ#0D,
J/+ 1:= Jwhen InJ=0.
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Completeness: correspondences

(Alexandroff)
Topo-E-Model Equiv. w.r.t. ‘CD[V]/

Relational Evidence Model

Standard Pseudo-Model for Lg|y),

Pseudo-Model for Ly, Equiv. wrt L Associated Model
L wrt Lopy,

Bisim. w.r.t. £D[V]iA

Pseudo-Model for Lkg, , E - Pseudo-Model for Lgvy), ,
’ quiv. w.r.t. KBi
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Conclusions and future work

Main contributions
o LOgiC KB,',A
o Non-monotonic, evidence-based notions of (virtual) group
knowledge and group belief
e Sound, complete, and decidable
o Better suited to epistemic dynamics induced by
evidence-sharing than traditional distributed knowledge
e Small step towards applying topological semantics to realistic,
practical settings: distributed computing, epistemology of
social networks
@ Auxiliary tool: logic O[V];
e Sound, complete, and decidable
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Conclusions and future work

Future work
@ Axiomatizing KB;: language of group knowledge and belief
for arbitrary subgroups /

e Language is decidable
o Not clear how to generalize completeness proof from KB; 5

@ Optimizing our model checker for Ly,

o Haskell-based symbolic model checker for spatial logics
e Can be used for plausibility models
o Efficiency of implementation can be improved
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Saving Group Monotonicity?

Two previous attempts: enforcing Group Monotonicity.

Two-agent solutions: save K; — Ky by...

@ ...restricting individual knowledge (Ramirez, 2015)

e i.e. individual knowledge depends on the evidence of other
agents,

@ ...or expanding group knowledge (Fernandez, 2018)

o by only pooling together (a.k.a. cherry picking) evidence that
constitutes knowledge.

But: resulting notions of (group) knowledge have undesirable
properties.

@ Ramirez’ individual knowledge depends on what other agents
know

@ Ramirez’ solution does not generalise single-agent case
© Fernandez’ group knowledge is unattainable in practice
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Open problem: completeness of KB,

Expectation: we can use the approach from the proof for KB; a.

@ Extend the proof to all subgroups

@ Main correspondence:
@ Pseudo-models for ﬁD[VL as pseudo-models for Lkg,
@ Recovering knowledge and belief relations from evidence is
easy: only one option
@ Pseudo-models for Lkp, as pseudo-models for LD[V],

@ Recovering evidence relations from knowledge and belief is
not easy: not uniquely determined
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Open problem: completeness of KB,, cont.d

@ Pseudo-models for Lp, as pseudo-models for ﬁm[v],

is a challenge! In particular:
o Pseudo-models for Lqy| (evidence):
belief can be expressed in terms of maximal states w.r.t.
evidence
e Pseudo-models for L, (knowledge):
similar: belief can be expressed in terms of maximal states
w.r.t. knowledge
o To show: maximal states in terms of soft evidence agree with
maximal states in terms of knowledge
Hypothesis: to prove this, we need different definitions for the
recovered evidence relations in the case of Lkg,.
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Model checking

Symbolic model checking is efficient model checking.
o Compact representation of model

o Efficient representation of formula

Model checking ¢ on (F,s):
@ Construct Binary Decision Diagram (BDD) of ||¢| r;
@ Check whether BDD of ¢ accepts valuation of s.
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Symbolic topo-structures

We model-check on structures equivalent to topo-e-models.

Definition 4 (Symbolic Topo-Structure)

A symbolic topo-structure is a tuple F = (Prop, 6, E, O) s.t.
@ Prop is the vocabulary (finite)
@ 0 is the state law (boolean formula)
O A state is a set s C Prop satisfying 6
Q@ E=(Ej)ica is the evidence
@ O=(0))jca are the observables
@ Each O; decides a partition over the states of F.

Soft and hard evidence are represented by propositional variables!
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Symbolic semantics

We focus on the semantics of soft and hard evidence:

Definition 3 (Symbolic Semantics of Loy,

Given a nonempty subgroup | C A, we define
(F,s)E Qe  iff for all states t of F,
ifsN O =tN0O;and sN E; C tN Ey,
then (F,t) E ¢

(F,s)E Ve iff  for all states t of F,
ifsNn O =tnN 0O,
then (F,t) E o.

Obtain boolean translation ||¢[| 7 of ¢ € Ly, such that
(F,5) F @ iff sk o] 7.
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Benchmarking

On a scalable model, we checked a formula closely related to
(BDK) Consistency of Group Belief with Distributed Knowledge.

]_03 . ‘ ‘ ‘ | —o— Explicit
—.— Symbolic
n —e— Explicit to Symbolic
2 —*— Symbolic to Explicit
8 100 - a
)
wn
1073 1

| | | |

4 6 8 10
No. of children in class
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Implementation: Boolean translation of [V],p

The boolean translation of a formula [V]p is

1]l 7 = V(VA\ O)(0 = [lell F)-

It is implemented in Haskell as

I
1 | bdd0f stm (Forall ags f) = forallSet otherps $ imp (theta stm) (bdd0f stm f)
‘ where

2 ‘ otherps = map fromEnum $ vocab stm \\ evOrObsOfGroup ags (obs stm)
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Implementation: Boolean translation of Oy

The boolean translation of a formula Oy is

ol = VE [ A (€ < &) = V(Prop\ O [ A\ (& = &) b= [l
e €E) & €E)

It is implemented in Haskell as

stateSatEv = conSet [imp (var $ primeMap Data.IntMap.! e) (var e) | e <- ev]

otherps = map fromEnum $ vocab stm \\ evOrObsOfGroup ags (obs stm)

1 | bddof stm (Box ags f) = forallSet evPrime $ imp evAtState evImpliesf

2 where

3 ev = map fromEnum $ evOrObsOfGroup ags (evidence stm)

g evPrime = map fromEnum $ take (length ev) [freshp (vocab stm) ..]

9 evAtState = conSet [equ (var $ primeMap Data.IntMap.! e) (var e) | e <- ev]
8

9

evimpliesf = forallSet otherps $ imp (con stateSatEv (theta stm)) (bdd0f stm

T 1
\ \
\ \
\ \
\ \
‘ primeMap = Data.IntMap.fromList $ zip ev evPrime ‘
\ \
\ \
\ \
\ \
| i |
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